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We demonstrate a close analogy between a viscoelastic medium and an electri-
cally conducting fluid containing a magnetic field. Specifically, the dynamics of the
Oldroyd-B fluid in the limit of large Deborah number corresponds to that of a
magnetohydrodynamic (MHD) fluid in the limit of large magnetic Reynolds number.
As a definite example of this analogy, we compare the stability properties of differ-
entially rotating viscoelastic and MHD flows. We show that there is an instability
of the Oldroyd-B fluid that is physically distinct from both the inertial and elastic
instabilities described previously in the literature, but is directly equivalent to the
magnetorotational instability in MHD. It occurs even when the specific angular mo-
mentum increases outwards, provided that the angular velocity decreases outwards;
it derives from the kinetic energy of the shear flow and does not depend on the cur-
vature of the streamlines. However, we argue that the elastic instability of viscoelastic
Couette flow has no direct equivalent in MHD.

1. Introduction
1.1. Viscoelastic and magnetohydrodynamic fluids

In his investigation of the viscosity of gases, Clerk Maxwell (1867) proposed that the
stress in a fluid obeys an equation of the form

(stress) + τ
d(stress)

dt
= (viscosity)× d(strain)

dt
, (1.1)

where τ is the relaxation time. If the time scale of the straining motion is long
compared to τ, the second term on the left-hand side is negligible and the stress
is proportional to the rate of strain. This Newtonian relation gives rise to viscous
behaviour. However, if the time scale of the strain is short compared to τ, the first
term on the left-hand side is negligible and the stress is proportional to the strain
itself. This Hookean relation gives rise to elastic behaviour. The reason for the elastic
response is that the rapid strain prevents the configuration of the molecules from
relaxing towards an equilibrium distribution, and the stress is therefore ‘frozen in’ to
the fluid.

Modern constitutive equations for viscoelastic fluids (Bird, Armstrong & Hassager
1987a) are usually expressed in a covariant tensorial form based on the principles set
out by Oldroyd (1950). His liquid B is one of the most widely used nonlinear models of
a viscoelastic fluid, and provides a fair representation of a dilute solution of a polymer
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of high molecular weight. It is based on Maxwell’s equation (1.1), but cast in a form
that satisfies the principle of material frame indifference. Moreover, it can also be
derived from the kinetic theory of idealized extensible polymer molecules contained in
a Newtonian solvent (Bird, Curtiss & Armstrong 1987b). The dimensionless number
characterizing the ratio of the relaxation time to the time scale of the flow is the
Deborah number (or Weissenberg number); when this is large, the polymeric stress
is effectively ‘frozen in’ to the fluid.

In an electrically conducting fluid, the magnetic field B affects the dynamics through
the bulk Lorentz force (e.g. Roberts 1967). This can be represented in terms of the
Maxwell electromagnetic stress tensor,†

M =
BB

µ0

− B2

2µ0

, (1.2)

the two parts of which correspond to a tension in the field lines and an isotropic
magnetic pressure. It is well known that, in a perfectly conducting fluid, the magnetic
field is ‘frozen in’ to the fluid, in the sense that magnetic field lines can be identified
with material lines (Alfvén 1950). Even in a fluid of finite conductivity, the magnetic
field is effectively ‘frozen in’ for motions of sufficiently short time scale, or sufficiently
large length scale, corresponding to a large magnetic Reynolds number. It follows
that the Maxwell stress is also ‘frozen in’ to the fluid in a certain sense.

From a mathematical point of view, the ‘freezing in’ of a tensor field X (r, t) in a
flow with velocity field u(r, t) can be expressed by the equation (e.g. Tur & Yanovsky
1993)

∂X

∂t
+LuX = , (1.3)

where L is the Lie derivative. For a scalar field X, this gives the familiar expression
∂X/∂t+u ·∇X = 0, meaning that the numerical value of X is conserved by every fluid
element. For a (contravariant) vector field B it gives the induction equation of ideal,
incompressible magnetohydrodynamics (MHD), which implies that the magnetic field
is advected and stretched in the same way as infinitesimal line elements. For a second-
rank tensor field it results in the ‘upper-convected derivative’ that appears in the
governing equation of the Oldroyd-B fluid (Bird et al. 1987a).

At a physical level, an analogy is to be seen between a polymer solution, containing
extensible molecules that are advected and distorted by the flow and react on it
through their tension, and an electrically conducting fluid, containing magnetic field
lines that are also advected and distorted by the flow and react on it through their
tension.

It follows that there is a physical and mathematical similarity between the dynamics
of viscoelastic and MHD fluids. We will show that a formal analogy can be drawn
between the Oldroyd-B fluid in the limit of large Deborah number and an MHD
fluid in the limit of large magnetic Reynolds number. In other words, in this limit,
the Maxwell stress in MHD obeys the equation of a Maxwell fluid.

1.2. Instabilities of differentially rotating fluids

Differentially rotating flows are common in astrophysics and geophysics, and have
been studied extensively in the laboratory. The simplest form of differential rotation
occurs when the angular velocity depends only on the cylindrical radius, Ω = Ω(r),

† Here µ0 is the permeability of free space. For non-relativistic flows, the electric field makes a
negligible contribution to the stress.
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and Couette flow between differentially rotating cylinders provides an excellent model
system for investigating the dynamics of such flows. According to Rayleigh (1916),
instability occurs in the absence of viscosity whenever the specific angular momentum
|r2Ω| decreases outwards. Most subsequent theoretical and experimental studies,
starting with the classic work of Taylor (1923), have focused on the onset of Rayleigh’s
inertial instability in the presence of viscosity, and the interesting sequence of dynami-
cal states that ensues.

Numerous variants of Couette flow have also been considered, and among these
the Couette flow of viscoelastic fluids has received much attention. Early work in
the 1960s (e.g. Thomas & Walters 1964; Giesekus 1966) examined the effect of
viscoelasticity on the onset of Rayleigh’s inertial instability. However, one of the most
important recent results is the theoretical and experimental demonstration by Larson,
Shaqfeh & Muller (1990) of a physically distinct instability in viscoelastic Couette
flow. This is a purely elastic instability that occurs at sufficiently large Deborah
number τ|dΩ/d ln r|, even in the limit of negligible inertia, and irrespective of the sign
of the angular momentum gradient.

The influence of a magnetic field on the stability of the Couette flow of an
electrically conducting fluid has also been investigated theoretically and (to a lesser
extent) experimentally. Again, early work (described by Chandrasekhar 1961) focused
on the effect of the magnetic field on the onset of inertial instability. More importantly,
Velikhov (1959) and Chandrasekhar (1960) uncovered a physically distinct instability
in magnetized Couette flow. In the absence of viscosity and resistivity, and in the
presence of a weak vertical magnetic field, this ‘magnetorotational’ instability occurs
whenever the angular velocity |Ω| decreases outwards, irrespective of the sign of the
angular momentum gradient.

The magnetorotational instability finds its most important applications in astro-
physical fluid dynamics, where magnetic fields are prevalent and the astronomical
length scales allow for large magnetic Reynolds numbers. The stability of differentially
rotating flows is of considerable interest in astrophysics, especially in connection with
accretion discs (e.g. Pringle 1981). These are usually thin discs of gas in circular orbital
motion around a star or black hole. The angular velocity decreases outwards according
to Kepler’s third law, Ω ∝ r−3/2, and the Reynolds numbers are extremely high (e.g.
1014). Observations indicate that angular momentum is transported outwards through
accretion discs at a much greater rate than allowed by viscosity, and understanding the
origin of this ‘anomalous viscosity’ has been a major goal of accretion disc research.

The anomalous viscosity is usually attributed to turbulent transport. However,
despite the very high Reynolds numbers, there is no convincing demonstration of
any suitable hydrodynamic instability in circular Keplerian flow. Indeed, simple
reasoning can be used to argue that hydrodynamic turbulence is unlikely to be
self-sustaining in a flow that amply satisfies Rayleigh’s stability criterion (Balbus &
Hawley 1998). However, it has been demonstrated that MHD turbulence develops very
readily in accretion discs, through the nonlinear development of the magnetorotational
instability. Since the results of Velikhov (1959) and Chandrasekhar (1960) were
rediscovered by Balbus & Hawley (1991) and their significance was appreciated,
the magnetorotational instability has been analysed in considerable detail in the
astrophysical literature.

1.3. Properties of the magnetorotational instability

The properties of the magnetorotational instability have been reviewed by Balbus
& Hawley (1998), and we recall some of the important features here. Its simplest
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manifestation is in an incompressible, inviscid, perfectly conducting fluid having
angular velocity Ω(r) and containing a uniform magnetic field B parallel to the axis
of rotation. An approximate local dispersion relation can be obtained for normal
modes having growth rate s and wavevector k parallel to B, and has the form

s4 + s2[4Ω(Ω − A) + 2ω2
A] + ω2

A(ω2
A − 4ΩA) = 0, (1.4)

where the quantity

A = − r
2

dΩ

dr
(1.5)

measures the differential rotation, and is known as Oort’s first constant in the astro-
physical literature. The Alfvén frequency is ωA = (µ0ρ)−1/2k ·B, and the combination

4Ω(Ω − A) =
1

r3

d

dr
(r4Ω2) (1.6)

is the Rayleigh discriminant, or the square of the epicyclic oscillation frequency. When
this is positive, unstable normal modes with s > 0 can nevertheless be found provided
that 4ΩA > 0, as is the case in astrophysical discs. The maximal growth rate, s = |A|,
is achieved by a mode having ω2

A = A(2Ω − A).
More generally, and from a local perspective, rotation and shear in the correct

relative orientation are required, and a weak magnetic field of any geometry is
sufficient to initiate the instability, provided the fluid is sufficiently ionized. In the
presence of significant dissipation, the ideal growth rate must compete with viscous
and resistive damping, so that growth rates less than |A| are achieved, or the instability
may be suppressed altogether. An unstable mode must always bend the field lines,
having a non-zero Alfvén frequency, and therefore the instability of a purely azimuthal
(or toroidal) field is essentially non-axisymmetric.

A simple explanation of the instability can be given in terms of two fluid elements,
connected by magnetic field lines, that are initially in circular orbit at the same
radius. The fluid elements are then given angular momentum perturbations of
opposite sign. The one receiving the positive perturbation moves to an orbit of
larger radius and acquires a smaller angular velocity, lagging behind its partner.
The tension of the magnetic field exerts a torque that pulls the lagging element
forwards, enhancing the initial perturbation and leading to instability. A mechani-
cal analogue, consisting of two orbiting particles connected by a weak spring, also
exhibits instability.

1.4. Plan of the paper

The main purpose of this paper is to draw attention to the physical and mathematical
similarity between viscoelasticity and MHD. As an example of the application of this
idea, we explore in some detail the relation between the instabilities of differentially
rotating viscoelastic and MHD flows. As described in § 1.2, previous investigations
have uncovered instabilities of viscoelastic and MHD Couette flow that are physically
distinct from Rayleigh’s inertial instability. In the light of the analogy we describe, an
obvious question is whether the elastic instability of Larson et al. (1990) is somehow
related to the magnetorotational instability. We will argue that this is not the case,
but will show that there is another instability of viscoelastic Couette flow that is the
direct equivalent of the magnetorotational instability.

The remainder of this paper is organized as follows. In § 2 we set out the basic
equations governing incompressible viscoelastic and MHD flows and present the
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analogy between them. We then discuss, in § 3, the possible sources of instability
on the basic of energy considerations. In § 4 we define a model system consisting
of plane Couette flow in a rotating channel, equivalent to cylindrical Couette flow
in the narrow-gap limit, and formulate eigenvalue problems for the normal modes
of the Oldroyd-B and MHD fluids. Some numerical solutions are presented in § 5
to illustrate the expected similarity between the two systems. In § 6 the existence of
localized growing solutions in the two systems, satisfying the same magnetorotational
dispersion relation, is demonstrated by an asymptotic analysis. Finally, the results are
summarized and discussed in § 7.

2. Basic equations
2.1. Viscoelastic fluid

We first consider an incompressible viscoelastic fluid of uniform density ρ. The
Oldroyd-B model is characterized by a solvent viscosity µ, a polymer viscosity µp and
a relaxation time τ. The velocity field U obeys the solenoidal condition,

∇ ·U = 0, (2.1)

and the equation of motion

ρ

(
∂U

∂t
+U · ∇U

)
= −∇Ψ + ∇ · T + µ∇2U . (2.2)

Here Ψ = p + ρΦ is the modified pressure (Φ being the gravitational potential) and
T is the Oldroyd-B stress, which is a symmetric tensor field of second rank satisfying
the constitutive equation (cf. equation (1.1))

T + τ

[
∂T

∂t
+U · ∇T − (∇U )T · T − T · ∇U

]
= µp[∇U + (∇U )T], (2.3)

where the superscript ‘T’ denotes the transpose of a second-rank tensor.

2.2. MHD fluid

We also consider an incompressible, electrically conducting fluid of uniform density
ρ, viscosity µ and electrical conductivity σ. The velocity field U obeys the solenoidal
condition,

∇ ·U = 0, (2.4)

and the equation of motion

ρ

(
∂U

∂t
+U · ∇U

)
= −∇Ψ + ∇ ·M + µ∇2U . (2.5)

Here Ψ = p + ρΦ is again the modified pressure and M is the Maxwell stress given
in equation (1.2). The magnetic field obeys the solenoidal condition,

∇ · B = 0, (2.6)

and the induction equation,

∂B

∂t
+U · ∇B = B · ∇U + η∇2B, (2.7)

which is derived from Maxwell’s equations for the electromagnetic field and Ohm’s
law. Here η = 1/(µ0σ) is the magnetic diffusivity.
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2.3. The formal analogy

Instead of comparing the Oldroyd-B stress T and the Maxwell stress M directly, we
take the polymeric and magnetic stress tensors to be

Tp = T +
µp

τ
, Tm =

BB

µ0

, (2.8)

which differ from T and M only by the addition of an isotropic part in each case.
Specifically, Tp does not include the equilibrium isotropic pressure nkT of the polymer
molecules, and Tm does not include the isotropic pressure B2/2µ0 of the magnetic
field. In an incompressible fluid, such terms can be taken care of by writing the two
equations of motion in the form

ρ

(
∂U

∂t
+U · ∇U

)
= −∇Ψp,m + ∇ · Tp,m + µ∇2U , (2.9)

where

Ψp = Ψ +
µp

τ
, Ψm = Ψ +

B2

2µ0

(2.10)

are redefined modified pressures.

According to the Oldroyd-B constitutive equation (2.3) and the induction equa-
tion (2.7), Tp and Tm satisfy the equations

∂Tp

∂t
+U · ∇Tp − (∇U )T · Tp − Tp · ∇U = −1

τ

(
Tp − µp

τ

)
, (2.11)

∂Tm

∂t
+U · ∇Tm − (∇U )T · Tm − Tm · ∇U =

η

µ0

[B∇2B + (∇2B)B]. (2.12)

In the limits τ→∞ and η → 0, corresponding to large Deborah number and large
magnetic Reynolds number respectively, the right-hand sides of these equations
are negligible. The polymeric and magnetic stresses then satisfy identical equations,
involving the same upper-convected derivative, and they appear identically in the
equation of motion of the fluid. Therefore the formal analogy can be expressed
symbolically as

lim
τ→∞(Oldroyd-B fluid) = lim

η→0
(MHD fluid). (2.13)

We note that Tm is a positive semi-definite tensor having one non-negative eigen-
value and two zero eigenvalues. Joseph (1990) has shown that Tp also retains a
positive definite character when it evolves according to equation (2.11). This is re-
quired on physical grounds, because in the derivation of the Oldroyd-B constitutive
equation from kinetic theory, Tp ∝ 〈dd〉, where d is the separation of the ends of
a polymer molecule, and the angle brackets denote an average (Bird et al. 1987b).
Equation (2.11) shows that Tp attempts to return to isotropy on the relaxation time,
but in a shear flow at large Deborah number, this tendency is overcome and one
eigenvalue of Tp does indeed dominate, as required by the MHD analogy.

As we have shown, the induction equation of ideal MHD provides an equation
for the magnetic stress tensor, which is comparable to the constitutive equation of
the Oldroyd-B fluid. One might ask whether the constitutive equation can be reduced
to something resembling an induction equation. This is indeed so: at any instant we
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may express the positive definite tensor Tp in terms of three vector fields Bi,

Tp =
1

µ0

3∑
i=1

BiBi. (2.14)

Equation (2.11) is recovered if the fields evolve according to the induction-like
equations

∂Bi
∂t

+U · ∇Bi = Bi · ∇U − 1

2τ

(
Bi − µ0µp

τ
Qi

)
, (2.15)

provided that the fields Qi satisfy

1

2

3∑
i=1

(BiQi +QiBi) = . (2.16)

To find the fields Qi, let B be the matrix whose columns are (B1,B2,B3), and similarly
for Q . In matrix notation, equation (2.16) reads

1
2
(BQT + QBT) =  (2.17)

and is satisfied when

Q = ( + A)C , (2.18)

where A is an arbitrary antisymmetric matrix and C is the inverse of BT. This means
that

Qi = C i +Ω× C i, (2.19)

where Ω is an arbitrary vector field. The vector fields C i are just the reciprocal vectors
to {Bi}, e.g.

C1 =
B2 × B3

B1 · (B2 × B3)
. (2.20)

The non-uniqueness of the fields Qi reflects the fact that the representation (2.14) is
partially redundant: we are expressing a tensor field with six independent components
in terms of three vector fields each having three independent components. It is
therefore permissible to impose three constraints on the fields Bi, and then Ω will no
longer be arbitrary. For example, it may be convenient to require that the fields Bi
be solenoidal. Now equation (2.15) implies that(

∂

∂t
+U · ∇

)
(∇ · Bi) = − 1

2τ

(
∇ · Bi − µ0µp

τ
∇ ·Qi

)
, (2.21)

and so the solenoidal property is preserved if Ω is chosen such that

0 = ∇ ·Qi = ∇ · (C i +Ω× C i), i = 1, 2, 3. (2.22)

Choosing the fields Bi to be solenoidal also ensures that

∇ · Tp =
1

µ0

3∑
i=1

Bi · ∇Bi, (2.23)

for direct comparability with the Lorentz force.



396 G. I. Ogilvie and M. R. E. Proctor

3. Energetics and instability
3.1. MHD fluid

Some insight into the possible instabilities of viscoelastic and MHD flows can be
obtained on the basis of energy considerations. Instabilities typically release energy
stored in the basic state and use this to allow a perturbation to grow in time. This
restricts the class of flows that can exhibit instability, and limits the growth rates that
can be achieved.

We start by considering the case of the MHD fluid, which is more straightforward.
Starting from the equations of § 2.2 it is possible to derive an energy equation of the
form

∂E

∂t
+ ∇ · F = −D, (3.1)

where

E = 1
2
ρU2 +

B2

2µ0

(3.2)

is the energy density,

F = (E +Ψ )U − 1

µ0

(B ·U )B − µU × (∇×U )− η

µ0

B × (∇× B) (3.3)

is the energy flux, and

D = µ|∇×U |2 +
η

µ0

|∇× B|2 (3.4)

is the dissipation rate.
Consider a perturbative solution of the equations of § 2.2 in which upper-case

symbols (U ,B, Ψ ) denote the basic state (not necessarily steady) and lower-case
symbols (u, b, ψ) denote the Eulerian perturbations. Using the linearized equations, it
is then possible to derive the energy-like equation

∂

∂t

(
1
2
ρu2 +

b2

2µ0

)
+ ∇ · F ′ =

(
−ρuu+

bb

µ0

)
: ∇U + (b× u) · J

−µ|∇× u|2 − η

µ0

|∇× b|2 (3.5)

governing the perturbations, where F ′ is a certain flux and J = µ−1
0 ∇× B is the

current density in the basic state. The quantity differentiated with respect to time is
the part of the energy density at second order in the perturbation amplitude that
must grow in any instability. Provided that the instability is local, so that it does not
depend on a particular choice of boundary conditions, the term ∇ ·F ′ cannot play an
essential role in this equation, because it will vanish on integration over the volume
of the fluid in the case of periodic boundary conditions or, in many cases, physical
boundary conditions. Therefore any local instability must derive its energy either
from the kinetic energy of the basic flow, through the term involving ∇U , or from the
magnetic energy, through the term involving J . For kinetic energy to be released, there
must be a velocity gradient, because a uniform flow can be eliminated by a Galilean
transformation and therefore cannot be a source of instability. A potential magnetic
field (J = 0) also cannot be a source of instability, as it minimizes the magnetic
energy in a region subject to the magnetic flux through its boundary being prescribed
(e.g. Priest 1982).
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In the case of a potential magnetic field it is possible to place an upper bound on
the growth rate of any local instability. Let

S = 1
2
[∇U + (∇U )T] (3.6)

be the rate-of-strain tensor of the basic flow, and (λ1, λ2, λ3) its eigenvalues. Its
quadratic form satisfies the inequalities

min(λ1, λ2, λ3) 6
S : xx

x2
6 max(λ1, λ2, λ3) (3.7)

and therefore
|S : xx|
x2

6 max(|λ1|, |λ2|, |λ3|). (3.8)

It follows from equation (3.5) that the largest possible growth rate of any local
instability is the largest eigenvalue, in absolute value, of the rate-of-strain tensor
of the basic flow. When the magnetic field is not potential the growth rate can be
increased by at most (µ0/ρ)1/2|J |/2.

3.2. Viscoelastic fluid

By working with the representation (2.14) of the polymeric stress in terms of three
vector fields Bi it is possible to derive a similar energy-like equation

∂

∂t

(
1
2
ρu2 +

3∑
i=1

b2
i

2µ0

)
+ ∇ · F ′′ =

(
−ρuu+

3∑
i=1

bibi
µ0

)
: ∇U +

3∑
i=1

(bi × u) · J i

+
1

µ0

3∑
i=1

(∇ · bi)u · Bi − µ|∇× u|2 − 1

τ

3∑
i=1

b2
i

2µ0

+
µp

2τ2

3∑
i=1

bi · qi (3.9)

governing linear perturbations from any basic state, where F ′′ is a certain flux and
J i = µ−1

0 ∇× Bi by analogy with MHD. If we constrain the representation such that
the fields are solenoidal, then the term involving ∇·bi vanishes. The argument proceeds
almost as before, with gradients in the basic flow or the basic stress providing potential
sources of energy for the disturbance. The final term, involving bi ·qi, is a third possible
source of energy, but the τ−2 dependence suggests that the effect of this term may be
expected to be small in the limit of large Deborah number.

4. Plane Couette flow in a rotating channel
As a minimal model of a differentially rotating flow, we consider a linear shear flow

(plane Couette flow) in a rotating channel. This is equivalent to cylindrical Couette
flow in the limit of a narrow gap, if the angular velocities of the two cylinders are
not widely disparate. All effects of curvature are then neglected.

4.1. Basic state and boundary conditions

We adopt Cartesian coordinates (x, y, z) in a frame of reference rotating with uniform
angular velocity Ω ez . The only change required to the equations in the rotating frame
is the inclusion of the Coriolis force. The centrifugal force, which is derivable from a
potential, can be absorbed into the modified pressure. The rotation of the frame does
not affect any of the other equations. The equation of motion therefore becomes

ρ

(
∂U

∂t
+U · ∇U + 2Ω ez ×U

)
= · · · . (4.1)
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We consider flow in the channel 0 < x < d between a stationary plane boundary
x = 0 and a moving plane boundary x = d with velocity −2Ad ey . The non-slip and
impermeable boundary conditions

U = 0 at x = 0, U = −2Ad ey at x = d (4.2)

apply. The basic flow is the plane Couette flow,

U = −2Ax ey. (4.3)

A modified pressure quadratic in x is required to balance the Coriolis force.
When this model is taken as a local representation of a differentially rotating

flow with angular velocity Ω(r), the shear parameter A is to be interpreted as Oort’s
first constant. When the Rayleigh discriminant 4Ω(Ω − A) is positive, the flow of an
inviscid, unmagnetized flow is linearly stable to axisymmetric perturbations. For a
Keplerian flow in which Ω ∝ r−3/2, we have A/Ω = 3/4. (In the rheological literature,
the shear rate |2A| would usually be called γ̇.)

In the case of the viscoelastic fluid, the non-zero stress components associated with
the basic flow are

Txy = Tyx = −2Aµp, Tyy = 8A2τµp, (4.4)

which provide the steady solution of equation (2.3). The polymeric stress defined in
equation (2.8) is

Tp =
µp

τ

 1 −De 0

−De 2De2 + 1 0

0 0 1

 , (4.5)

where De = 2Aτ is the Deborah number, and this can be represented in the form
(2.14) using the three solenoidal fields

B1,2 =
(µ0µp

2τ

)1/2

 −1

De± (De2 + 1)1/2

0

 , B3 =
(µ0µp

τ

)1/2

 0

0

1

 . (4.6)

Note that, for large De, the field B1 is much greater than the other two and corresponds
to a uniform magnetic field almost exactly in the y-direction.

In the case of the MHD fluid, we suppose that a uniform magnetic field B = By ey
is imposed. We also suppose the boundaries to be perfectly conducting, so that the
additional boundary conditions

Bx =
∂By

∂x
=
∂Bz

∂x
= 0 (4.7)

apply at x = 0 and x = d.
We note that the magnetic stress tensor in the MHD fluid resembles the polymeric

stress tensor in the viscoelastic fluid if De is large and we identify

B2
y

µ0

↔ 8A2τµp. (4.8)

The energy considerations of § 3 are not affected by the rotation of the frame of
reference, because the Coriolis force does no work on the fluid. The eigenvalues of
the rate-of-strain tensor are (A,−A, 0). As the magnetic field is uniform, the maximal
growth rate of any local instability, at least in the MHD case, is |A|. Incidentally,
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this proves the conjecture of Balbus & Hawley (1992) that the magnetorotational
instability, with a suitably chosen wavevector and in the absence of dissipation,
achieves the largest possible growth rate of any local shear instability. (In an inviscid,
unmagnetized fluid, the largest possible growth rate of Rayleigh’s inertial instability
is
√

4Ω(A− Ω). This is always less than or equal to |A|, with equality in the case
A = 2Ω.)

4.2. Dimensionless groups

We introduce the kinematic viscosities ν = µ/ρ and νp = µp/ρ. The four dimensionless
parameters of the viscoelastic system are the Rossby number, the Reynolds number,
the Deborah number and the viscosity ratio, defined by

Ro =
A

Ω
, Re =

2Ad2

ν
, De = 2Aτ, S =

ν

νp

, (4.9)

respectively. For reference, the Taylor number is Ta = Re2Ro−1(1− Ro−1).
The four dimensionless parameters of the MHD system are the Rossby number, the

Reynolds number, the magnetic Reynolds number and the Chandrasekhar number,
defined by

Ro =
A

Ω
, Re =

2Ad2

ν
, Rm =

2Ad2

η
, Q =

B2
yd

2

µ0ρνη
, (4.10)

respectively. The identification (4.8) corresponds to

Q↔ 2RmDe

S
. (4.11)

We can therefore quote the magnetic field strength in terms of an effective Deborah
number for the MHD system, to make a direct comparison easier.

We are interested in comparing the behaviour of the viscoelastic and MHD systems
in the limit of large De and large Rm. This limit could be approached in many different
ways, but we choose to do this as one might in an ideal experiment, by keeping ρ, ν,
νp, τ, η and d fixed while increasing Ω, A and By together. This means that Ro and
S are fixed while Re ∝ Rm ∝ De and Q ∝ De2. The elasticity, De/Re, is fixed in this
process.

4.3. Linear perturbations

We now consider small deviations from the above state, such that the Eulerian
perturbation of velocity, say, is

Re[u(x) exp(st+ ikyy + ikzz)], (4.12)

where s is the growth rate (in general complex) and ky and kz are real wavenumber
components. Differentiation of the perturbations with respect to x will be denoted by
a prime, and we define k2 = k2

y + k2
z .

4.4. Viscoelastic fluid

The perturbations of the viscoelastic fluid satisfy the equations

u′x + ikyuy + ikzuz = 0, (4.13)

ρ[(s− 2iAxky)ux − 2Ωuy] = −ψ′ + t′xx + ikytxy + ikztxz + µ(u′′x − k2ux), (4.14)

ρ[(s− 2iAxky)uy + 2(Ω−A)ux] = −ikyψ+ t′xy + ikytyy + ikztyz + µ(u′′y − k2uy), (4.15)
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ρ(s− 2iAxky)uz = −ikzψ + t′xz + ikytyz + ikztzz + µ(u′′z − k2uz), (4.16)

txx + τ[(s− 2iAxky)txx − 2iTxykyux] = 2µpu
′
x, (4.17)

txy + τ[(s− 2iAxky)txy + 2Atxx−Txy(u′x + ikyuy)− iTyykyux] = µp(u′y + ikyux), (4.18)

txz + τ[(s− 2iAxky)txz − iTxykyuz] = µp(u′z + ikzux), (4.19)

tyy + τ[(s− 2iAxky)tyy + 4Atxy − 2Txyu
′
y − 2iTyykyuy] = 2iµpkyuy, (4.20)

tyz + τ[(s− 2iAxky)tyz + 2Atxz − Txyu′z − iTyykyuz] = iµp(kyuz + kzuy), (4.21)

tzz + τ[(s− 2iAxky)tzz] = 2iµpkzuz. (4.22)

These constitute a sixth-order system of linear ODEs to be solved for the eigenvalue s.
The dependent variables may be taken as (ψ, ux, uy, u

′
y, uz, u

′
z). The boundary conditions

ux = uy = uz = 0 apply at x = 0, d.
These equations must be solved numerically in general. However, it is instructive

to analyse further the case of unsheared or ‘axisymmetric’ modes (ky = 0), which
correspond to axisymmetric modes in cylindrical geometry. In this case, the equations
have constant coefficients and can be combined into a single equation for ux,

[qs+ (qν + νp) D]2 Dux + 4Ω(Ω − A)q2k2
z ux − 4ΩAτνpk

2
z Dux = 0, (4.23)

where q = 1 + τs and D is the operator

D = − d2

dx2
+ k2

z . (4.24)

This equation may be investigated analytically in an approximate way by considering
solutions of a simple trigonometric form ux ∝ sin(kxx), although these cannot satisfy
all six physical boundary conditions. (In § 5 below we compute the global solutions
of this equation numerically.) The local dispersion relation corresponding to these
solutions,

[qs+ (qν + νp)(k2
x + k2

z )]
2(k2

x + k2
z ) + 4Ω(Ω −A)q2k2

z − 4ΩAτνpk
2
z (k

2
x + k2

z ) = 0, (4.25)

is a quartic equation for s with real coefficients. It can be shown that the principle
of the exchange of stabilities holds: instability first sets in at a stationary bifurcation
(s = 0), which occurs when the constant term passes through zero, i.e. when

(ν + νp)2(k2
x + k2

z )
3 + 4Ω(Ω − A)k2

z − 4ΩAτνpk
2
z (k

2
x + k2

z ) = 0. (4.26)

Suppose that Rayleigh’s criterion for stability, 4Ω(Ω − A) > 0, is satisfied, and that
4ΩA > 0. When τ is increased from zero to a sufficiently large value, a bifurcation
occurs and axisymmetric instability ensues. To understand this we note that, when
ν = 0, and in the limit τ� |s|−1 with k2

z � k2
x, the dispersion relation (4.25) becomes

identical to the ideal magnetorotational dispersion relation (1.4) for a vertical magnetic
field and vertical wavevector, provided that we identify B2

z ↔ µ0µp/τ. This is precisely
what is suggested by the field B3 of equation (4.6). Although the principal analogy is
with a uniform magnetic field in the y-direction, such a field provides no restoring force
to axisymmetric perturbations and we see instead the effect of the much weaker field
B3. Therefore the axisymmetric viscoelastic instability, which we verify numerically in
§ 5 below, can be understood as being analogous to a magnetorotational instability
deriving from the weak vertical field.
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4.5. MHD fluid

The perturbations of the MHD fluid satisfy the equations

u′x + ikyuy + ikzuz = 0, (4.27)

ρ[(s− 2iAxky)ux − 2Ωuy] = −ψ′m + iµ−1
0 kyBybx + µ(u′′x − k2ux), (4.28)

ρ[(s− 2iAxky)uy + 2(Ω − A)ux] = −ikyψm + iµ−1
0 kyByby + µ(u′′y − k2uy), (4.29)

ρ(s− 2iAxky)uz = −ikzψm + iµ−1
0 kyBybz + µ(u′′z − k2uz), (4.30)

b′x + ikyby + ikzbz = 0, (4.31)

(s− 2iAxky)bx = ikyByux + η(b′′x − k2bx), (4.32)

(s− 2iAxky)by + 2Abx = ikyByuy + η(b′′y − k2by), (4.33)

(s− 2iAxky)bz = ikyByuz + η(b′′z − k2bz). (4.34)

These constitute a tenth-order system of linear ODEs to be solved for the eigen-
value s. The dependent variables may be taken as (ψm, ux, uy, u

′
y, uz, u

′
z, by, b

′
y, bz, b

′
z).

The boundary conditions ux = uy = uz = b′y = b′z = 0 apply at x = 0, d. To eliminate
bx from the problem, differentiate equation (4.31) to find b′′x, then substitute into
equation (4.32) to find

(s− 2iAxky + ηk2)bx = ikyByux − η(ikyb
′
y + ikzb

′
z). (4.35)

Therefore bx is determined algebraically in terms of the dependent variables, and can
be substituted where needed. It automatically satisfies the boundary condition bx = 0
at x = 0, d. A difficulty would arise if the quantity s− 2iAxky + ηk2 were to vanish at
any point. As this is a complex function, it is ‘unlikely’ that both real and imaginary
parts would vanish simultaneously. In any case, it could vanish only for a decaying
mode, and such modes are of no interest here.

Although the linearized equations (4.27)–(4.34) for the MHD fluid appear quite
different from those of the viscoelastic fluid, equations (4.13)–(4.22), they can be seen
to correspond in the limits τ→ ∞, η → 0 if we identify Tyy ↔ B2

y/µ0, txy ↔ Bybx/µ0,
tyy ↔ 2Byby/µ0 and tyz ↔ Bybz/µ0, while Txy, txx, txz, tzz ↔ 0.

In the special case of axisymmetric modes (ky = 0) the velocity and magnetic
perturbations are decoupled. The magnetic perturbation always decays if η > 0. The
remaining equations can be combined into a single equation for ux,

(s+ νD)2Dux + 4Ω(Ω − A)k2ux = 0. (4.36)

Stability is assured if Rayleigh’s criterion, 4Ω(Ω − A) > 0, is satisfied.

5. Numerical investigation
We solve the eigenvalue problems defined in §§ 4.4 and 4.5 for non-axisymmetric

modes numerically by the shooting method. The arbitrary normalization ψ(0) = 1 is
adopted, and the equations are integrated from x = 0 to x = 1. For the viscoelastic
system, the boundary conditions at x = 1 impose three conditions on the three un-
known quantities s, u′y(0) and u′z(0). Newton–Raphson iteration is applied to converge

on a solution. For the MHD system, shooting in C5 is required.
In the absence of viscosity and resistivity, the MHD problem becomes identical

to the ‘Cartesian model’ studied by Ogilvie & Pringle (1996) in their investigation
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Figure 1. Variation of the growth rate of the first unstable non-axisymmetric mode (at ky = 1) with
the Deborah number, for the viscoelastic fluid (solid line) and the MHD fluid (dashed line). Note
that the Reynolds number is Re = (24/5)De.

of the magnetorotational instability in the presence of an azimuthal (or toroidal)
magnetic field. We recall some results of that analysis: (i) the instability requires
a non-zero azimuthal wavenumber ky so that the magnetic field lines are bent by
the perturbation; (ii) as kz is increased, unstable modes emerge from the continuous
spectrum of Alfvén waves and the eigenvalues approach limit points; (iii) the largest
growth rates are attained in the limit kz → ∞, when the normal modes are localized
near a boundary (although, as we show below, solutions also exist that grow rapidly
but transiently in the interior of the fluid); (iv) the maximal growth rate, A, is attained
for an Alfvén frequency ωA = (15/16)1/2Ω in the Keplerian case A/Ω = 3/4.

For numerical purposes it is convenient to adopt d and Ω−1 as units of length and
time. We adopt Ro = 3/4, which is stable according to Rayleigh’s criterion and is
suggested by astrophysical applications, and take ν = νp = η for simplicity.

In the presence of dissipation, all modes decay in the limit kz →∞. Therefore
we restrict attention to a moderate value, kzd = π, at which the growth rates are
appreciable (but not optimal, and always less than A). We select the optimal Alfvén
frequency, as described in § 1.3, by choosing kyd = 1 and De/Re = 5/24. The most
unstable mode is one with the fewest nodes in its eigenfunction. The variation of its
growth rate with De is shown in figure 1. As De increases, the eigenvalues of the
mode in the viscoelastic and MHD systems converge. The eigenfunctions are also in
close agreement at De = 150, as shown in figure 2.

We have also solved numerically for axisymmetric unstable modes in the viscoelastic
problem, as anticipated in § 4.4. The growth rates of the most unstable modes are
shown in figure 3. They are smaller than for the non-axisymmetric modes, consistent
with the idea that the axisymmetric instability is analogous to a magnetorotational
instability deriving from the weak vertical field B3.

6. Asymptotic analysis
We now present an asymptotic analysis demonstrating the existence of localized,

non-axisymmetric growing solutions of the perturbation equations for both systems,
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Figure 2. Eigenfunctions of a non-axisymmetric unstable mode at De = 150, for the viscoelastic
fluid (left) and the MHD fluid (right). Real and imaginary parts are shown with solid and dashed
lines, respectively.
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Figure 3. Variation of the growth rates of axisymmetric unstable modes (ky = 0) with the Deborah
number, for the viscoelastic fluid. The eigenfunctions of modes appearing successively as De is
increased have increasing numbers of nodes.
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consistent at leading order with the magnetorotational dispersion relation (1.4). We are
interested again in the limit of large Deborah number and large magnetic Reynolds
number.

6.1. MHD fluid

We consider a solution of the perturbation equations for the MHD fluid, localized in
a layer near an arbitrary point x = x0. Let

x = x0 + εX, (6.1)

where ε� 1 is an ordering parameter and X = O(1) within the layer of interest. We
introduce the scalings

kz = ε−3/2k̃z , ν = ε4ν̃, η = ε4η̃, (6.2)

implying that the vertical wavelength is even shorter than the width of the layer,
and that dissipation has only a weak effect on the solution. The solution will
have an exponential time-dependence at leading order, but we relax the assump-
tion of a normal mode and allow the solution to evolve freely on a long time
scale captured by the slow time coordinate T = εt. This is achieved through the
replacement

s 7→ s0 + ε
∂

∂T
+ O(ε2) (6.3)

in the perturbation equations, and we also replace

d

dx
7→ ε−1 ∂

∂X
(6.4)

within the layer. A consistent expansion scheme for the perturbations is of the form

ux = ux0(X,T ) + εux1(X,T ) + O(ε2),

uy = uy0(X,T ) + εuy1(X,T ) + O(ε2),

uz = ε1/2[uz0(X,T ) + O(ε)],

ψm = ε2[ψ0(X,T ) + O(ε)],

bx = bx0(X,T ) + εbx1(X,T ) + O(ε2),

by = by0(X,T ) + εby1(X,T ) + O(ε2),

bz = ε1/2[bz0(X,T ) + O(ε)].


(6.5)

From equations (4.28), (4.29), (4.32) and (4.33) at leading order we obtain the
algebraic system

ρ(ŝux0 − 2Ωuy0) = iµ−1
0 kyBybx0,

ρ[ŝuy0 + 2(Ω − A)ux0] = iµ−1
0 kyByby0,

ŝbx0 = ikyByux0,

ŝby0 + 2Abx0 = ikyByuy0,

 (6.6)

where ŝ = s0 − 2iAkyx0. These may be combined into the single equation

{ŝ 4 + ŝ2[4Ω(Ω − A) + 2ω2
A] + ω2

A(ω2
A − 4ΩA)}ux0 = 0, (6.7)
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where ω2
A = k2

yB
2
y/µ0ρ. This has a non-trivial solution,

ux0 = F(X,T ), (6.8)

if and only if ŝ satisfies the magnetorotational dispersion relation (1.4). We then
deduce uy0, bx0 and by0 in terms of F , and also uz0, ψ0 and bz0 from equations (4.27),
(4.30) and either (4.31) or (4.34) at leading order.

From equations (4.28), (4.29), (4.32) and (4.33) at order ε we similarly obtain

{ŝ 4 + ŝ2[4Ω(Ω − A) + 2ω2
A] + ω2

A(ω2
A − 4ΩA)}ux1 = R, (6.9)

where the right-hand side R depends on F and its derivatives. Given that ŝ has been
chosen to satisfy the dispersion relation, the solvability condition for this equation is
R = 0, which results in an evolutionary equation for F ,

∂F

∂T
= a

∂2F

∂X2
+ (ibX − c)F. (6.10)

This is a modified diffusion equation containing constant coefficients

a =
(ŝ+ ω2

A)3

2k̃2
z ŝ[ŝ

4 + 2ω2
Aŝ

2 + ω2
A(ω2

A + 4Ω2)]
, (6.11)

b = 2Aky, (6.12)

c =
k̃2
z[ν̃(ŝ+ ω2

A)2 + 4η̃Ω2ω2
A]

ŝ 4 + 2ω2
Aŝ

2 + ω2
A(ω2

A + 4Ω2)
. (6.13)

When the conditions for instability are met, ŝ is real and positive and therefore a,
b and c are real and a and c are positive. A particular solution of equation (6.10),
corresponding to an initial condition F(X, 0) = δ(X), and valid for T > 0 in the
absence of boundaries, is the Green function

F = (4πaT )−1/2 exp

[
−
(
a2b2T 4 + 12acT 2 − 6iabXT 2 + 3X2

12aT

)]
, (6.14)

as can be obtained by Fourier-transform methods. The Green function decays as
T →∞ for any fixed X, or as |X| → ∞ for any fixed T .

It follows that localized solutions exist that grow exponentially at leading order,
following the magnetorotational dispersion relation. The envelope of the solution
evolves more slowly in time but ultimately decays superexponentially, so that the
instability grows for many e-folding times before the development of very short
length scales leads to decay. If we insisted on having a normal-mode solution,
equation (6.10) would become an Airy equation in X. It can be shown (Ogilvie 1997)
that localized solutions of this type do exist, but only near the boundaries of the
fluid.

The reason for considering disturbances that are localized in x is that it provides
a convenient method of demonstrating the existence of growing solutions without
resorting to numerical analysis. Provided that the localization scale δx is long com-
pared to the vertical wavelength and to the characteristic dissipative scales, the growth
rate is insensitive to δx. Terquem & Papaloizou (1996) have shown that, in the limit
of ideal MHD, a continuous spectrum of infinitely localized growing disturbances
exists.
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6.2. Viscoelastic fluid

A very similar analysis can be carried out for the viscoelastic fluid. The additional
requirements are the scaling τ = ε−4τ̃ and the expansions

txx = O(ε4),

txy = txy0(X,T ) + εtxy1(X,T ) + O(ε2),

txz = O(ε9/2),

tyy = tyy0(X,T ) + εtyy1(X,T ) + O(ε2),

tyz = ε1/2[tyz0(X,T ) + O(ε)],

tzz = O(ε7).


(6.15)

Otherwise the analysis is so similar that we do not repeat it in detail. Equations (6.7)
and (6.9) are obtained exactly as before, provided that we identify ω2

A = k2
yTyy/ρ in

the dispersion relation. Exactly the same evolutionary equation (6.10) is also obtained
with the sole exception that the term involving η̃ does not appear in the coefficient c.

Therefore this method also establishes the correspondence between the viscoelastic
and MHD fluids in the limit of large De and large Rm, and demonstrates the existence
of the magnetorotational instability in the Oldroyd-B fluid.

7. Discussion
We have demonstrated a close analogy between a viscoelastic medium and an

electrically conducting fluid containing a magnetic field. Both an Oldroyd-B fluid, in
the limit of large Deborah number, and a magnetohydrodynamic fluid, in the limit
of large magnetic Reynolds number, feature a stress tensor that is nearly ‘frozen in’
to the fluid in a precise mathematical sense. As a definite example of this analogy,
we have examined a local model of a differentially rotating fluid, consisting of plane
Couette flow in a rotating channel. The stress tensor in the case of a viscoelastic fluid
resembles the Maxwell stress corresponding to a magnetic field aligned with the flow.

Our analysis demonstrates that there is a detailed correspondence between instabili-
ties in the two systems. We have identified a direct equivalent of the magnetorotational
instability in the viscoelastic fluid. It exists when the angular velocity and relative
vorticity are antiparallel (or when the angular velocity decreases outwards) and the
maximal growth rate is equal to the shear parameter, or Oort constant, A. It is dis-
tinguished most clearly from Rayleigh’s inertial instability by the fact that it occurs
even when the specific angular momentum increases outwards. It is also distinct from
the elastic instability described by Larson et al. (1990), which depends on the curved
geometry of Couette flow and exists in the elastic limit, De/Re→∞.

We have also found an axisymmetric viscoelastic instability that can be understood
as being analogous to the magnetorotational instability of a vertical magnetic field.
This reflects the fact that the polymeric stress tensor Tp can be decomposed into
three effective magnetic fields, one of which is a uniform field almost aligned with
the flow and another of which is a uniform vertical field. Although the vertical field
is much weaker in the limit of large De, it provides the dominant restoring force for
axisymmetric disturbances.

The instability discussed by Larson et al. (1990) does not appear in our analysis
because we have neglected the curvature of the streamlines. Although Larson et al.
(1990) considered the limit of a narrow gap, the characteristic growth rates they



Viscoelastic and magnetohydrodynamic flows and their instabilities 407

obtained are smaller than the growth rates we have discussed, by a factor of order
ε1/2, where ε is the ratio of the gap width to the radius. Being purely elastic in nature,
the instability of Larson et al. (1990) must derive its energy from the elastic energy
stored in the flow, rather than the shear energy which is the source for inertial and
magnetorotational instabilities.

It is natural to enquire whether there is an MHD equivalent of the instability
of Larson et al. (1990), in which energy is derived from the magnetic field. In
cylindrical Couette flow at large De the dominant stress component has the form
Tφφ ∝ r−4, which can be identified with an azimuthal (or toroidal) magnetic field
Bφ ∝ r−2. Typically, toroidal pinch configurations are unstable to modes that rely
on the curvature of the magnetic field lines and derive energy from the magnetic
configuration. The most dangerous are the m = 1 ‘kink’ modes and m = 0 ‘sausage’
modes. However, in the absence of fluid motion the profile Bφ ∝ r−2 is sufficiently
steep to be stable to all perturbations (Tayler 1973). If the profile of Tφφ happened
to be less steep, for example Tφφ ∝ r−1, it is likely that there would be a viscoelastic
equivalent of the kink instability. We therefore conclude that the instability of Larson
et al. (1990) is not directly related to an MHD instability, but relies on inherently
viscoelastic effects not captured by our analogy. This conclusion is supported by an
examination of the physical explanation that Larson et al. give for their instability.

Since the work of Larson et al. (1990) there have been a number of related
theoretical and experimental studies of viscoelastic Couette flow, some of which have
examined the effects of inertia and non-axisymmetry (e.g. Avgousti & Beris 1993;
Steinberg & Groisman 1998; Baumert & Muller 1999). Some of these might have
been expected to reveal the analogue of the magnetorotational instability. However, it
appears that the cases usually investigated are those in which either the outer or inner
cylinder is stationary, or the inner cylinder rotates at twice the angular velocity of the
outer cylinder with only a narrow gap between the two. This means that, whenever
the analogue of the magnetorotational instability might have occurred, the system is
unstable to Rayleigh’s inertial instability. In order to separate the two effects, it would
be valuable to examine cases in which the angular velocity decreases outwards but the
specific angular momentum increases. Interestingly, the magnetorotational instability
has never been demonstrated in laboratory experiments. Although there is currently
much effort towards this goal (e.g. Goodman & Ji 2002), the technical requirements
are considerable and the system is constrained by the very small magnetic Prandtl
numbers of liquid metals. A viscoelastic magnetorotational experiment might prove
to be less demanding and easier to visualize.

We conclude with some further perspectives on the analogy between viscoelastic
and MHD flows.

The analogy is asymptotic in nature and therefore not perfect. Viscoelastic and
MHD flows deviate from simple stress freezing in different ways: the viscoelastic
stress relaxes, while the magnetic field diffuses. The classes of exactly steady solutions
of the two systems are therefore different, because after a sufficiently long time either
relaxation or diffusion will have its effect. For example, while there is only one
solution for viscoelastic Couette flow, magnetized Couette flow can be set up with
either vertical or azimuthal current-free magnetic fields. In this sense, the analogy is
more applicable to dynamical, time-dependent situations than to steady flows.

Renardy (1997) has analysed the large-De limit of steady, two-dimensional flows
of the upper-convected Maxwell fluid (obtained by setting the solvent viscosity µ of
the Oldroyd-B fluid to zero). Noting that the stress T has one dominant eigenvalue
in this limit, he writes T = ρuu, where ρ and u are a fictitious density and a fictitious
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velocity field. When inertial forces are negligible, ∇ · T must balance the pressure
gradient and ρ and u are then found to satisfy the steady Euler equations. Through
our analogy, a connection can be seen here with the work of Moffatt (1985), which
makes use of the analogy between steady Euler flows and magnetostatic equilibria in
which the Lorentz force balances the pressure gradient.

There is a close connection between the polymeric stress Tp at moderate De and the
mean stress tensor 〈BB〉/µ0 of a disordered magnetic field, as occurs in MHD turbu-
lence. Under these conditions, Tp and 〈BB〉/µ0 may have three positive eigenvalues of
comparable magnitude. Indeed, Ogilvie (2001) has suggested the use of Maxwellian
viscoelastic models, with Deborah numbers of order unity, for MHD turbulence in
accretion discs.

Besides Couette flow, another problem that has received much attention is the
stability of a planar jet or shear layer with respect to two-dimensional disturbances.
Azaiez & Homsy (1994) and Rallison & Hinch (1995) examined the equivalent
problem for a viscoelastic fluid, noting the potentially stabilizing influence of a
polymer additive. Taking a limit in which Re and De tend to infinity while maintaining
a finite ratio, they derived an elastic equivalent of Rayleigh’s stability equation. An
analogy exists between this problem and that of the stability of a similar flow of
an ideal, electrically conducting fluid with a magnetic field parallel to the flow, a
problem studied since the 1950s. In a recent study, Hughes & Tobias (2001) derived
a magnetic Rayleigh equation (their equation (3.5)) that is exactly equivalent to the
elastic Rayleigh equation given by Rallison & Hinch (1995, p. 314).

In this paper we have drawn attention to a useful analogy between viscoelastic
and MHD flows, and have discussed the relation between instabilities of differential
rotation in the two systems. We anticipate that much further use can be made of this
analogy.

We are grateful to John Hinch, John Rallison and the referees of this paper for
their constructive comments. G. I. O. acknowledges the support of the Royal Society
through a University Research Fellowship.
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